t-tests, non-parametric tests, and large studies—a paradox of statistical practice?

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

t-tests, non-parametric tests, and large studies—a paradox of statistical practice?

BACKGROUND During the last 30 years, the median sample size of research studies published in high-impact medical journals has increased manyfold, while the use of non-parametric tests has increased at the expense of t-tests. This paper explores this paradoxical practice and illustrates its consequences. METHODS A simulation study is used to compare the rejection rates of the Wilcoxon-Mann-Whi...

متن کامل

Benchmarking Non-Parametric Statistical Tests

Although non-parametric tests have already been proposed for that purpose, statistical significance tests for non-standard measures (different from the classification error) are less often used in the literature. This paper is an attempt at empirically verifying how these tests compare with more classical tests, on various conditions. More precisely, using a very large dataset to estimate the w...

متن کامل

Quantitative Data – Parametric & Non-parametric Tests

Assumption for 1 sample T test: Data are normally distributed. We have discussed in the last article on how to check the normality assumption of a quantitative data. One issue being highlighted was that these formal normality tests are very sensitive to the sample size of the variable concerned. As seen here, table II shows that the normality assumptions for both the systolic and diastolic bloo...

متن کامل

the washback effect of discretepoint vs. integrative tests on the retention of content in knowledge tests

در این پایان نامه تاثیر دو نوع تست جزیی نگر و کلی نگر بر به یادسپاری محتوا ارزیابی شده که نتایج نشان دهندهکارایی تستهای کلی نگر بیشتر از سایر آزمونها است

15 صفحه اول

Principal component decomposition of non-parametric tests

Let ~o denote an arbitrary non-parametric unbiased test for a Gaussian shift given by an infinite dimensional parameter space. Then it is shown that the curvature of its power function has a principal component decomposition based on a Hilbert Schmidt operator. Thus every test has reasonable curvature only for a finite number of orthogonal directions of alternatives. As application the two-side...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Medical Research Methodology

سال: 2012

ISSN: 1471-2288

DOI: 10.1186/1471-2288-12-78